最大熵定理

设 $X \sim p(x)$ 是一个连续型随机变量,其微分熵定义为 $$ h(X) = - \int p(x)\log p(x) dx $$ 其中,$\log$ 一般取自然对数 $\ln$, 单位为 奈特(nats)。

考虑如下优化问题: $$ \begin{array}{ll} &\underset{p}{\text{Maximize}} & \displaystyle h(p) = - \int_S p(x)\log p(x) dx \newline &\text{Subject to} &\displaystyle \int_S p(x) dx = 1 \newline &~ & p(x) \ge 0 \newline &~ & \displaystyle \int_S p(x) f_i(x) dx = \alpha_i, ~i=1,2,3,\dots,n \end{array} $$ 其中,集合 $S$ 是随机变量的 support,即其所有可能的取值。我们意图找到这样的概率分布 $p$, 他满足所有的约束(前两条是概率公理的约束,最后一条叫做矩约束,在模型中有时会假设随机变量的矩为常数),并且能够使得熵最大。将上述优化问题写成标准形式:

$$ \begin{array}{ll} &\underset{p}{\text{Minimize}} & \displaystyle \int_S p(x)\log p(x) dx \newline &\text{Subject to} &-p(x) \le 0 \newline &~ &\displaystyle \int_S p(x) dx = 1 \newline &~ & \displaystyle \int_S p(x) f_i(x) dx = \alpha_i, ~i=1,2,3,\dots,n \end{array} $$

使用Lagrange 乘数法得到其 Lagrangian

$$ L(p,\boldsymbol{\lambda}) = \int_S p\log p ~dx - \mu_{-1}p + \mu_0 \left(\int_S p dx - 1\right) + \sum_{j=1}^n \lambda_j \left(\int_S pf_jdx - \alpha_j\right) $$

根据 KKT 条件对 Lagrangian 求导令为 0,可得最优解。

$$ \begin{gathered} \frac{\partial L}{\partial p} = \ln p + 1 - \mu_{-1} + \mu_0 + \sum_{j=1}^n \lambda_jf_j := 0 \newline \implies p = \exp\left(-1 + \mu_{-1} - \mu_0 - \sum_{j=1}^n \lambda_j f_j \right) =\displaystyle c^{\star} e^{-\sum_{j=1}^n\lambda_j^{*} f_j(x)} := p^{\star} \end{gathered} $$

其中,我们要选择 $c^{\star}$, $\boldsymbol{\lambda}^{\star}$ 使得 $p(x)$ 满足约束。到这里我们知道,在所有满足约束的概率分布当中,$p^{\star}$ 是使得熵达到最大的那一个!


举例

1. 高斯分布

约束:

  • $E(X) = 0 \implies f_1 = x$
  • $E(X^2) = \sigma^2 \implies f_2 = x^2$

根据上面的论证,最大熵分布应具有如下形式:

$$ p(x) = ce^{-\lambda_1x - \lambda_2 x^2} $$

再根据 KKT 条件:

  1. $\int_{-\infty}^{+\infty} p(x) = 1$
  2. $\int_{-\infty}^{+\infty} x p(x) = 0$
  3. $\int x^2 p(x) = \sigma^2$

由条件 $(2) \implies p(x)$ 是偶函数 $\implies \lambda_1 = 0$, 原条件变成

  1. $\int_{-\infty}^{+\infty} ce^{-\lambda_2x^2} = 1$
  2. $\int x^2 ce^{-\lambda_2x^2} = \sigma^2$

$$ \implies c = \frac{1}{\sqrt{2\pi\sigma^2}}, ~\lambda_2 = \frac{1}{2\sigma^2} \implies p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \sim N(0, ~\sigma^2) $$

2. 指数分布

约束:

  • $X \ge 0$
  • $E(X) = \frac{1}{\mu}$

根据上面的论证,最大熵分布应具有如下形式:

$$ p(x) = ce^{-\lambda_1x} $$

再根据 KKT 条件:

  1. $\int_{0}^{+\infty} ce^{-\lambda_1x}= 1$
  2. $\int_0^{+\infty} x ce^{-\lambda_1x} = \frac{1}{\mu}$

推导如下:

$$ \begin{gathered} \int_{0}^{+\infty} e^{-\lambda_1x} = \frac{1}{c} \implies \lambda_1 = c \newline \int_{0}^{+\infty}x e^{-\lambda_1x} = \frac{1}{c\mu} = \frac{1}{\lambda_1\mu} \implies \lambda_1 = \mu \end{gathered} $$

$\implies p(x) = \mu e^{-\mu x} \sim Exp(\mu)$

3. 均匀分布

约束:

  • $a \le X \le b$

根据上面的论证,最大熵分布应具有如下形式: $$ \begin{gathered} p(x) = ce^{- 0x} = c \newline \int_a^b c ~dx = 1 \implies c = \frac{1}{b-a} \end{gathered} $$ $\implies p(x) = \frac{1}{b-a} \sim Unif(a,~b)$

4. 几何分布

几何分布计数直到第一次成功前所有的失败次数。$P(X=k) = q^kp$ 约束:

  • $X = 0,1,2,\dots$
  • $E(X) = \frac{1-p}{p}$

根据上面的论证,最大熵分布应具有如下形式:

$$ P(X=k) = p_k = ce^{-\lambda_1 k} $$

再根据 KKT 条件:

  1. $\sum_{k=0}^{\infty} p_k = 1$
  2. $\sum_{k=0}^{\infty} k p_k = \frac{1-p}{p}$

推导如下:

$$ \begin{gathered} \sum_{k=0}^{\infty} ce^{-\lambda_1 k} = c \sum_{k=0}^{\infty} q^k \quad(\text{where }q = e^{-\lambda_1}) \newline = \frac{c}{1-q} \implies c = 1-q \newline \sum_{k=0}^{\infty} k ce^{-\lambda_1 k} = c\sum_{k=1}^{\infty} k (e^{-\lambda_1})^k = c\sum_{k=1}^{\infty}k q^k = cq \sum kq^{k-1} \newline = cq \sum (q^k)’ = cq \left(\sum_{k=1}^{\infty}q^k\right)’ = cq \left(\frac{q}{1-q}\right)’ \newline = cq \cdot \frac{1}{(1-q)^2} = \frac{q}{1-q} = \frac{1-p}{p} \end{gathered} $$

$\implies e^{-\lambda_1} = q = 1-p, ~ c =p \implies P(X=k) = p_k = pq^k \sim Geom(p)$